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Abstract: We report on the use of line-scan hyperspectral Raman microscopy in combination 
with multivariate statistical analyses for identifying and classifying single cells isolated from 
clinical samples of human thyroid nodules based on their intrinsic Raman spectral signatures. 
A total of 248 hyperspectral Raman images of single cells from benign thyroid (n = 127) and 
classic variant of papillary carcinoma (n = 121) nodules were collected. Spectral differences 
attributed to phenylalanine, tryptophan, proteins, lipids, and nucleic acids were identified for 
benign and papillary carcinoma cells. Using principal component analysis and linear 
discriminant analysis, cells were identified with 97% diagnostic accuracy. In addition, 
preliminary data of cells from follicular adenoma (n = 20), follicular carcinoma (n = 25), and 
follicular variant of papillary carcinoma (n = 18) nodules suggest the feasibility of further 
discrimination of subtypes. Our findings indicate that hyperspectral Raman microscopy can 
potentially be developed into an objective approach for analyzing single cells from fine 
needle aspiration (FNA) biopsies to enable the minimally invasive diagnosis of 
“indeterminate” thyroid nodules and other challenging cases. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Thyroid cancer is the most common endocrine malignancy and ninth most common overall 
cancer with an estimated 53,990 new cases in the United States in 2018 [1]. It is more 
prevalent in females, accounting for more than 75% of the cases. Thyroid cancer can occur in 
any age, but it is most common after age 30, with increasing aggressiveness in older patients 
[2]. The cornerstone for evaluating most thyroid nodules is a neck ultrasound followed by 
fine-needle aspiration (FNA) in sonographically suspicious nodules. Approximately 10-30% 
of thyroid nodules have “indeterminate” cytology according to the criteria set forth by the 
Bethesda System for Reporting Thyroid Cytopathology [3]. In these cases the cytopathologist 
cannot determine if the nodule is benign or malignant and the patient is faced with the 
uncertainty of whether the thyroid should be surgically removed. Recently, various genetic 
based molecular studies have been developed to aid clinicians in the management of patients 
with indeterminate thyroid nodules; but, the positive predictive value has been suboptimal [4]. 
As such, thyroidectomy remains the treatment of choice, although majority of the excised 
nodules are ultimately benign. Hence, a novel approach that can more accurately diagnose 
and differentiate thyroid nodules would avoid unnecessary surgeries and have a major impact 
in patient care and management. 

Raman spectroscopy is a label-free spectroscopic technique based on inelastic scattering 
of light by vibrational modes of chemical bonds that allows for the identification of intrinsic 
molecules (e.g. protein, lipids, amino acids, nucleic acids) in cells and tissues. Subtle 
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differences in chemical composition and structure can lead to changes in peak intensities or 
positions in a Raman spectrum. Raman spectroscopy provides several advantages for 
cytopathology applications [5,6]. It can provide intrinsic chemical information of the sample 
without requiring exogenous labels or stains, has subcellular spatial resolution if implemented 
into a confocal microscope, and is nondestructive and noninvasive. Previous studies have 
demonstrated the use of Raman spectroscopy to improve the diagnosis of thyroid tissues [7–
11]. Here, we extend this technology for diagnosing human thyroid cancers at the single cell 
level, with the goal of developing Raman spectroscopy as an ancillary spectral cytopathology 
tool to improve the accuracy of diagnosing thyroid nodules. In this study, we performed line-
scan hyperspectral Raman microscopy on single cells isolated from benign and neoplastic 
human thyroid nodules from clinical samples and applied multivariate statistical methods, 
principal component analysis (PCA) and linear discriminant analysis (LDA), to analyze the 
multidimensional spectral data for the purposes of optimizing group separation and 
determining the diagnostic accuracy of the Raman spectral signatures in various thyroid 
nodules. 

2. Materials and methods
2.1 Sample collection

This study is approved by our Institutional Review Board (UC Davis, Sacramento, CA). All 
patients were consented prior to study enrollment. Representative samples of the fresh 
nodules were collected for the study. Nodules that had insufficient residual tissue after 
diagnostic sampling were excluded from the study. The diagnostic materials were processed 
according to routine diagnostic surgical pathology with hematoxylin and eosin (H&E) stain, 
and the final diagnosis rendered is confirmed by a second pathologist for the study. 

2.2 Sample preparation 

Tissue samples were dissociated into single cells using established methods [12]. Briefly, the 
samples were incubated at 37°C in a collagenase (Worthington Type 2) solution 300U/ml in 
Hank’s balanced salt solution (HBSS) for a few hours to digest the tissue. After digestion, 
single cells were isolated from larger pieces of tissue fragments by using a nylon mesh with 
70μm pore size (Corning cell strainer). The isolated cells were washed a few times by 
centrifugation in HBSS, after which the supernatant was discarded and the packed cells 
resuspended for a few minutes into a 4% paraformaldehyde in phosphate buffered saline 
(PBS) solution for fixation. The fixed cells were then washed by centrifugation and the 
supernatant was re-suspended in PBS solution. The cell solution was pipetted onto a #1 
thickness quartz coverslip that was mounted in a cell chamber holder (Thermo Fisher 
Scientific). Cells remained immersed in PBS solution for the duration of the Raman 
spectroscopy measurements. 

2.3 Hyperspectral Raman microscopy 

Hyperspectral Raman images of individual cells were acquired using a previously published 
method [13]. Briefly, a master oscillator power amplifier fiber laser system (Sacher-Laser) 
with a wavelength of 785 nm and a maximum power of 2 W is used as the excitation source. 
The laser beam passes a narrow 785 nm maxline laser-line clean-up filter (Semrock, LL01-
785) to ensure monochromatic excitation and an achromatic cylindrical lens (Thorlabs, f =
100 mm) that focuses the Gaussian beam into a line profile. The cylindrical lens sits on a
rotational mount for adjusting the orientation of the line to ensure that it is properly imaged
onto the entrance slit of the spectrometer (PI Acton, SpectraPro SP2300i). After the
cylindrical lens, the line-profile is imaged by an achromatic lens (Thorlabs, f = 500 mm) onto
the back aperture of a 60x, 1.2 N.A. water immersion objective lens (Olympus, UPlanSApo)
and focused into the sample plane. The length of the line at the sample plane is 50 µm with a
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diffraction-limited width. The cell sample sits on a motorized flat top translational stage 
(ProScan Prior II) of an inverted microscope (Leica, DM IRM), allowing for scan. The 
Raman signals generated from the line shaped focal region are collected by the same 
objective lens and separated from the excitation source by a 785 nm dichroic long pass filter 
(Semrock, LP02-785RU). The Raman signals pass through another razoredge long pass filter 
(Semrock, LP02-785RE) and are imaged by an achromatic lens (Thorlabs, f = 125 mm), onto 
the entrance-slit of the spectrometer. The slit is adjusted to a width of 20 µm. A 600 grooves 
per mm grating is used to disperse the Raman signals from the line pattern, which is imaged 
onto a back-illuminated deep-depletion CCD detector (PI Acton, Pixis100). The image of the 
50 µm long line is projected onto 100 pixels on the CCD chip, resulting in 0.5 µm per pixel. 
Typical Raman acquisition times per line is 50 seconds leading to a full hyperspectral Raman 
image of a single cell within minutes by scanning the cell with 1µm step in the direction 
perpendicularly to the excitation laser line. 

2.4 Data analysis 

Background removal was first performed on the Raman spectra using a fully automated 
method for subtraction of fluorescence from biological Raman spectra [14]. Raman spectra 
were normalized with respect to the area under the curve. Multivariate statistical analysis was 
then performed on the multidimensional Raman spectral data for objective identification and 
classification of single thyroid cells. PCA is an unsupervised method that is used to identify 
the combination of Raman spectral features that maximize the data variance. These features 
are captured in a new set of variables called principal components (PCs) in a reduced 
dimension. The first few PCs typically account for the majority of the data variance. 
However, as an unsupervised method, PCA has no prior knowledge about the groupings of 
the spectral data, which means it is not suitable for the purposes of group separation. LDA is 
a supervised technique and is useful for discriminating between groups. So, for the purposes 
of optimizing group classification, a PCA-LDA model was developed in which PCs were 
used as the input variables for LDA. A ‘leave-N-out’ cross-validation technique was used to 
test the classification sensitivity and specificity of the PCA-LDA model. This procedure 
involves taking all K-N cells as a training set to build the LDA model, which is then used to 
classify the N ‘blind’ cells that were left out. This is done repeatedly for every possible group 
of N in the set of K cells. The accuracy of a prediction cross validation method of Raman 
spectra was presented by using the confusion matrix, where cells were classified as true 
negative (TN), false positive (FP), true positive (TP) and false negative (FN). Diagnostic 
accuracy, sensitivity and specificity were calculated. All homemade algorithms were written 
in Matlab (Mathworks, USA). 

3. Results and discussion
Table 1 summarizes the patient sample characteristics used in this study. 228 cells from 10 
different thyroid nodules (5 benign, 5 papillary carcinomas) underwent Raman spectroscopic 
analysis and hyperspectral Raman images were acquired from each individual cell. 
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our data may be attributed to our method’s ability to adequately sample the entire cell. Our 
preliminary results even show excellent discrimination of cells that cannot be distinguished 
by current cytopathologic FNA analysis. Future studies will focus on FNA biopsy samples 
and will analyze other “indeterminate” thyroid nodules. We believe this novel approach can 
be developed into an objective and accurate ancillary tool for analyzing FNA samples to 
improve diagnostic cytopathology and avoid unwarranted surgeries. 
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